

Carbon neutral and waste to value opportunities

Fred van Beuningen, 7th forest & wood innovation forum, June 22nd, 2023

Carbon neutrality has become a strategic imperative

Companies are committing to net zero by 2050, some as early as 2030

How companies achieve their net zero targets

CO2 removal required as early as 2030 to be net negative by 2050

Key carbon neutrality levers and technologies

Technologies with broad applicability to several industries

	PROCESS IMPROVEMENT	FUEL & FEEDSTOCK SWITCH	MATERIAL EFFICIENCY & SUBSTITUTION	CIRCULARITY	CCUS
REDUCE EMISSIONS	 Energy efficiency Automation Automation Automation 	Alternative fuels •• Renewable energy ••••• Electrification •••• Biomass •• Hydrogen •••• Nuclear fusion •	 Alternative & novel materials •• Biobased materials • Synthetic fuels •• 	 Secondary raw materials •••• Waste sorting & recovery/recycling ••• Waste-to-value •••• 	 Capture Utilization Mineralization Chemical Biological Storage
	CARBON CREDITS	NATURE-BASED S	SOLUTIONS	BECCS	DACCS
EMISSIONS	 Analytics, trading and sale 	 Land Management Forest Management Ocean Fertilization 		or energy (incl. CO2 • G • M	eological storage lineralization

Cement, Chemicals, Iron & Steel, Mining, Oil & Gas, Power, Transport

CCUS: Carbon Capture Utilization and Storage; **CCS**: Carbon Capture and Storage;

DACCS: Direct Air Capture with Carbon Storage; BECCS: Bio-energy with carbon capture and storage

Example: Mining

1.9 to 5.1Gt GHG emissions annually (~4 to 7% of global emissions)

SIZE & SOURCE

TECHNOLOGY LEVERS

Renewable energy

- Renewable electricity generation
- Energy storage
- Smart microgrids
- Mine site remediation & reclamation

Electrification & automation

- Trucking & transport
- All-electric mine
- New enabling sensors
- Advanced AI & data analytics (predictive or real-time)
- Continuous mining

Process & technology innovation

- Efficiency improvement
- Grade engineering / precision mining

- Energy-efficient comminution
- Robotic inspection & maintenance
- Mineral processing

Waste-to-value

- Metal recycling
- Secondary production
- Waste to value: waste dumps and tailings

Waste to Value Opportunities

Framework for Evaluation of the Value Proposition & Economics

Feedstock

- Access to concentrated or abundant feedstock
- Feedstock specifications
 - Annual supply (volume / mass)
 - \circ Composition
- Pre-processing requirements
- Geographic constraints
- Feedstock cost/value
- Current treatment of waste (venting / flaring)

Conversion & Transport

- CAPEX
 - Modularity
 - o Balance of plant
 - Requirement of large- scale pilot/ demo
- OPEX

٠

٠

- o Labor
- o Energy
- \circ Consumables
- Performance metrics
 - o Yield
 - o Throughput

Product

- Market applications and value streams
- Product price and volatility
- Value to volume ratio
- Product specifications
 - $\circ~$ Input for product or process
 - $\circ~$ Commodity product
 - Annual production (mass / volume)
- Post-processing and sorting
- Geographic limitations
- Logistics cost

2nd generation products from biomass

Pathway to chemicals, materials and fuels

- ✓ Second generation products from waste biomass avoiding competition with food crops
- After pretreatment lignocellulosic biomass can be converted to several industrially relevant chemicals
- Lignocellulosic biomass's composition is variable, and pretreatment can produce process-limiting compounds
- Valorizing lignin, due to its complex composition and poor properties have not yet resulted in large-scale applications
- Consumer-facing brands have established downstream partnerships with a few leading startups, with the most interest directed toward the development of second-generation packaging material
- Emerging companies valorizing lignocellulosic feedstocks are developing a wide array of second-generation products

Innovation

Industry collaboration, technology developers upstream and down stream

